Center for Negative Carbon **Emissions**

Matt Green

Associate Professor, Chemical Engineering School for Engineering of Matter, Transport & Energy (SEMTE) Director, Center for Negative Carbon Emissions mdgreen8@asu.edu

WCPH 326

Mission:

- (1)Pioneer fundamental and applied research in Negative Emission Technologies
- (2) Grow transdisciplinary research programs that advance our understanding of sorbent design, systems integration and deployment, utilization and sequestration technologies, and political and socioeconomic landscapes
- (3) Invent and innovate at length scales spanning from the molecular level to the pilot plant
- (4) Develop the next generation workforce needed for the new carbon economy

Sorbent Synthesis and Characterization Process Modeling and CFD System Scale-up

milligram → gram characterization

Wind tunnel Passive DAC emulation

Automated continuous outdoor testing

Sapling Regenerator kilogram scale

passive DAC
MSA pilot plant
now at London Science Museum

Full Scale Demonstration Facility

CNCE Technology Deployment

CCarbonCapture™

MechanicalTree[™]

NuAria, TRL 6, 2 kg/d

DACBox

Standardizing CDR Credits

Mobile renewable methanol production water - electrolyzer

Novel DAC sorbent/form

reduces DAC cost ~5x

DOE-funded DAC Testbed

Air2Fuel:

data that compares tradeoffs between CDR pathways

AUDACity, Integrated biological utilization

DAC in Data centers

New Passive DAC IP: "Telescope"

DACLab

New partners for DAC Hub 28Gearth

Mobile Air to Methanol (Air2Fuel)

The **Air2Fuel system** integrates three technologies:

CO₂ to MeOH Pilot at Air Company Transformational Catalysts

AIR COMPANY

H₂ production provides heat needed for DAC, but requires \$0.02/kWh electricity to be economical

<u>Water</u> can be sourced from Air and 85% recycled Novel DAC sorbent/form reduces DAC cost ~5x

Tenewable energy hydro genator water electrolyzer H₂

And community benefits planning experts:

- 1. <u>Jeremy Babendure (SciTech & ASU)</u>: Workforce
- 2. <u>Lauren Keeler, Joni Adamson</u>: Environmental Justice and Community Engagement
- 3. Jennifer Chandler: Diversity, Equity and Inclusion

Phase I Project Summary (12/23-12/24)

Conceptual designs for a 770k tonne methanol (MeOH) per year facility & 1 L MeOH per day mobile system

<u>Workshop</u> with +30 stakeholders evaluated community risks and benefits of producing chemicals/fuels and energy storage with Air2Fuel

Phase II Proposal Submitted

Methanol car

& generator demo

Low cost, benign, scalable sorbent and system for direct air capture of CO₂ **SEM** images Air in *Next phase:* Work now being prototyping, commercialized by Before optimization, NuAria and sorbent life cycle 100 µm enhancements AC Felt ∢ Saturated K₂CO₃ solution Sorbent preparation AC felt sheet CO₂ captured from ambient lab air: ~420 ppm CO₂ and **100** μm Cumulative CO_2 adsorbed (μ mol g⁻¹) ~30% RH *Key challenges:* Air out Dry AC felt 500 The sorbents exhibit good cycling 400 110 °C behavior 100 °C 300 200 100 10000 12000 14000 studying Time (s) 100 CO₂ desorption increases with

Cycle

temperature; so do energy costs

Sorbent performance

**Sorbent engineering and process optimization could

further improve this number

- Current sorbents face significant life cycle issues (petroleum-derived materials, landfilled at end-of-life, etc.)
- Long term stability and estimated endof-life unknown for polymeric sorbents Biomass-derived sorbents could be a dropin replacement for the sorbents we are

Patent Apps PCT/US2022/015647 and 63/550,426

the center for negative carbon emissions

Polymers for CO₂ capture and cyanobacteria productivity

Questions?

Can we capture CO₂ from air and release in cyanobacterial culture?

Can we prepare a polymer with Q.A. groups without bactericidal effect?

	IEC _{theo} [mmol g ⁻¹]	IEC _{exp} [mmol g ⁻¹]		CO ₂ release _{exp} [mmol g ⁻¹] D12	
net-CL-6C	4.0	3.1	2.3	1.5	65
net-CL-Xy	4.2	3.6	2.7	0.7	27

10

11

reen

Nutrients added

Scaling up to make a difference in the global CO₂

concentrations

Dr. Gokhan Demirci

the center for negative carbon emissions

Continuous moisture-driven CO₂ capture

CHANGING WHAT'S POSSIBLE

QPAES copolymer analysis

	M _n (kDa)	M _w (kDa)	Đ
16 KDa Udel® PSU	23.7	42.7	1.80
22 KDa Udel® PSU	49.3	79.8	1.60
(PAES)(75)-co-(APAES)(25)	21.7	43.1	1.99
(PAES)(50)-co-(APAES)(50)	73.5	146.2	1.99
(PAES)(25)-co-(APAES)(75)	83.1	246.6	2.98

8 9 10 11 12

8 9 10 11 12

(c) Blank

5 6 7 Time (h)

(e) PAES-co-QAPAES[HCO](50)

3 4

<3% of active sites utilized

41% of sites utilized in moisture swing

~3.5 m² membrane (~1 ft x 38 ft)

Continuing this effort w/ Prof. Tom Miller (UCL)

CO₂ (ppm)

700

CO₂ (ppm)

PVA-arginine nanofiber composites reen PVA control ·L-Arg ·20% RH $H_2N \searrow NH$ 40% RH 200 adsorbed 80% RH **Effect of** Effect of Arg humidity -PVA-Arg_{7.5} conc. H_2N ,COO. -PVA-Arg₂₅ ---PVA-Arg₅₀ -PVA-Arg₇₅ -PVA-Arg₁₀₀ High voltage DC power supply 400 500 100 200 300 2000 4000 6000 8000 10000 Time [s] Time [s] 25% AHT 25% BHT 50% AHT 75% AHT **PVA** control 50% BHT Syringe pump Physical PVA, L-Arg, H₂O 500nn

Exploring phosphonium-containing polymers for CO₂ capture via

moisture-swing

CO₂ loading capacity

R'= P, N				
R"= Me,	Βι			
A= -HCO ₃				

Polymer	¹ IEC _{theo}	² IEC _{exp}
	[mmol g ⁻¹]	[mmol g ⁻¹]
[PVBTMeA] ⁺ [HCO ₃] ⁻	4.2	3.5 ± 0.30
[PVBTBuA] ⁺ [HCO ₃] ⁻	2.7	2.2 ± 0.23
[PVBTMeP] ⁺ [HCO ₃] ⁻	3.9	3.9 ± 0.3
[PVBTBuP] ⁺ [HCO ₃] ⁻	2.6	2.3 ± 0.15

400

Velazco-Medel in preparation

Summary

- The CNCE is a thought leader in DAC materials, systems, and integration globally
- The expertise of CNCE students, staff, and faculty extends from atomic to pilot scales
- Graduates from the CNCE are equipped to tackle global challenges in sustainability through useinspired, transdisciplinary training programs and projects
- We are an incubator for IP and early stage ventures
- We want to collaborate!

